Cell-type specific recognition of RGD- and non-RGD-containing cell binding domains in fibrillin-1.
نویسندگان
چکیده
The fibrillins are large glycoprotein components of 10-nm microfibrils found in the extracellular matrix of most tissues. Microfibrils play a role in elastic fiber assembly and serve to link cells to elastic fibers in the extracellular matrix. To determine whether fibrillin-1 specifically interacts with receptors on cells from fibrillin-rich tissues, we evaluated whether two cell types that produce different types of fibrillin can adhere to purified fibrillin-1 in cell adhesion assays. Our results indicate that both cell types attach and spread on fibrillin-1 and that the RGD sequence in the fourth 8-cysteine motif mediates this interaction. Fibroblast attachment to fibrillin-1 was sensitive to inhibition by antibodies to the alphavbeta3 receptor and by peptides encoding the RGD sequence in fibrillin-1 and the second RGD sequence in fibrillin-2. In contrast, adhesion of auricular chondroblasts to fibrillin-1 was only partially inhibited by these reagents, suggesting that some cell types recognize a second, non-RGD binding site within the fibrillin molecule. These findings confirm and extend ultrastructural studies that suggest a direct interaction between microfibrils and the cell surface and provide a functional explanation for how this association occurs.
منابع مشابه
Tripeptide arginyl-glycyl-aspartic acid (RGD) for delivery of Cyclophosphamide anticancer drug: A computational approach
Density functional theory (DFT) calculations were performed on tripeptide arginyl-glycyl-aspartic acid (RGD) as an efficient drug carrier to deliver the commercially famous cyclophosphamide (CP) anticancer drug within ethanol solution. The most negative binding energy (-5.22 kcal/mol) was measured for the CP-RGD-7 created through the H-bond interaction between the P=O (phosphoryl) oxygen atom o...
متن کاملFibrillin-integrin interactions in health and disease.
Human fibrillin-1 is the major structural protein of extracellular matrix 10-12 nm microfibrils. It has a disulfide-rich modular organization which consists primarily of cbEGF (Ca(2+)-binding epidermal growth factor-like) domains and TB (transforming growth factor beta-binding protein-like) domains. TB4 contains an RGD (Arg-Gly-Asp) integrin-binding motif. The atomic structure of this region ha...
متن کاملArg-Gly-Asp-containing domains of fibrillins-1 and -2 distinctly regulate lung fibroblast migration.
Development of the extracellular matrix is a critical feature of alveolar formation and actively involves pulmonary interstitial fibroblasts. The elastic fiber network is an interconnected system of load-bearing fibers that also influences the behavior of adjacent cells, particularly the interstitial lung fibroblasts (LF). We hypothesized that discrete domains of fibrillins-1 and -2 interact wi...
متن کاملLectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis.
Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a cha...
متن کاملUsing Self-Assembled Monolayers to Model Cell Adhesion to the 9th and 10th Type III Domains of Fibronectin†
Most mammalian cells must adhere to the extracellular matrix (ECM) to maintain proper growth and development. Fibronectin is a predominant ECM protein that engages integrin cell receptors through its Arg-Gly-Asp (RGD) and Pro-His-Ser-Arg-Asn (PHSRN) peptide binding sites. To study the roles these motifs play in cell adhesion, proteins derived from the 9th (containing PHSRN) and 10th (containing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 271 9 شماره
صفحات -
تاریخ انتشار 1996